Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems
نویسندگان
چکیده
We develop the convergence analysis of discontinuous Galerkin finite element approximations to second-order quasilinear elliptic and hyperbolic systems of partial differential equations of the form, respectively, − ∑d α=1 ∂xαSiα(∇u(x)) = fi(x), i = 1, . . . , d, and ∂2 t ui− ∑d α=1 ∂xαSiα(∇u(t, x)) = fi(t, x), i = 1, . . . , d, with ∂xα = ∂/∂xα, in a bounded spatial domain in R d, subject to mixed Dirichlet–Neumann boundary conditions, and assuming that S = (Siα) is uniformly monotone on R d×d. The associated energy functional is then uniformly convex. An optimal order bound is derived on the discretization error in each case without requiring the global Lipschitz continuity of the tensor S. We then further relax our hypotheses: using a broken G̊arding inequality we extend our optimal error bounds to the case of quasilinear hyperbolic systems where, instead of assuming that S is uniformly monotone, we only require that the fourth-order tensor A = ∇S is satisfies a Legendre–Hadamard condition. The associated energy functional is then only rank-1 convex. Evolution problems of this kind arise as mathematical models in nonlinear elastic wave propagation.
منابع مشابه
Discontinuous Galerkin Finite Element Approximation of Hamilton--Jacobi--Bellman Equations with Cordes Coefficients | SIAM Journal on Numerical Analysis | Vol. 52, No. 2 | Society for Industrial and Applied Mathematics
We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with nonsmo...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Hamilton-Jacobi-Bellman Equations with Cordes Coefficients
We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordès coefficients. The method is proven to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with strong...
متن کاملSymmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...
متن کاملAccuracy of High Order and Spectral Methods for Hyperbolic Conservation Laws with Discontinuous Solutions
Higher order and spectral methods have been used with success for elliptic and parabolic initial and boundary value problems with smooth solutions. On the other hand, higher order methods have been applied to hyperbolic problems with less success, as higher order approximations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and show that spectral methods yield ...
متن کاملA Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems
This artic!e considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. _Veighted residual approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007